1. Identification

GHS Product Identifier: SODIUM HYPOCHLORITE Solution 8 -12.5% avail. Chlorine

Company Name: CHEM-SUPPLY PTY LTD (ABN 19 008 264 211)
Address: 38 - 50 Bedford Street GILLMAN
SA 5013 Australia
Tel: (08) 8440-2000
Fax: (08) 8440-2001

Recommended use of the chemical and restrictions on use: Bleaching agent, water purification, pharmaceuticals, fungicides, household bleach, intermediate, organic chemicals, swimming pool disinfectant, laundering, germicide and laboratory reagent.

Name: Pool chlorine, Dakins solution
Product Code: ST044
Other Names: SODIUM HYPOCHLORITE Solution 8 -12.5% avail. Chlorine
EMERGENCY CONTACT NUMBER: +61 08 8440 2000
Business hours: 8:30am to 5:00pm, Monday to Friday.

Chem-Supply Pty Ltd does not warrant that this product is suitable for any use or purpose. The user must ascertain the suitability of the product before use or application intended purpose. Preliminary testing of the product before use or application is recommended. Any reliance or purported reliance upon Chem-Supply Pty Ltd with respect to any skill or judgement or advice in relation to the suitability of this product of any purpose is disclaimed. Except to the extent prohibited at law, any condition implied by any statute as to the merchantable quality of this product or fitness for any purpose is hereby excluded. This product is not sold by description. Where the provisions of Part V, Division 2 of the Trade Practices Act apply, the liability of Chem-Supply Pty Ltd is limited to the replacement of supply of equivalent goods or payment of the cost of replacing the goods or acquiring equivalent goods.

2. Hazard Identification

GHS classification of the substance/mixture: Skin Corrosion/Irritation: Category 1B
Specific target Organ Toxicity - Single Exposure Category 3 (respiratory tract irritation)
Hazardous to the Aquatic Environment - Acute Hazard: Category 1

Signal Word(s): DANGER
Hazard Statement(s): H314 Causes severe skin burns and eye damage.
H335 May cause respiratory irritation.
H400 Very toxic to aquatic life.
AUH031 Contact with acids liberates toxic gas

Pictogram(s): Corrosion, Environment, Exclamation mark

Precautionary statement – Prevention:
P260 Do not breathe dust/fume/gas/mist/vapours/spray.
P264 Wash thoroughly after handling.
P273 Avoid release to the environment.
P271 Use only outdoors or in a well-ventilated area.
P280 Wear protective gloves/protective clothing/eye protection/face protection.

Precautionary statement – Response:
P301+P330+P331 IF SWALLOWED: rinse mouth. Do NOT induce vomiting.
P303+P361+P353 IF ON SKIN (or hair): Remove/Take off immediately all contaminated clothing. Rinse skin with water/shower.
P363 Wash contaminated clothing before reuse.
P304+P340 IF INHALED: Remove victim to fresh air and keep at rest in a position comfortable for breathing.
P310 Immediately call a POISON CENTER or doctor/physician.
P305+P351+P338 IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing.

Precautionary statement – Storage:
P405 Store locked up.
Precautionary statement – Disposal
P501 Dispose of contents/container to an approved waste disposal plant.

3. Composition/information on ingredients

<table>
<thead>
<tr>
<th>Chemical Characterization</th>
<th>Name</th>
<th>CAS</th>
<th>Proportion</th>
<th>Hazard Symbol</th>
<th>Risk Phrase</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liquid</td>
<td>Water</td>
<td>7732-18-5</td>
<td>87.5-92 %</td>
<td>C</td>
<td>R31, R34</td>
</tr>
<tr>
<td></td>
<td>Sodium Hypochlorite</td>
<td>7681-52-9</td>
<td>8-12.5 %</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4. First-aid measures

Inhalation
If inhaled, remove from contaminated area to fresh air immediately. Apply artificial respiration if not breathing. If breathing is difficult, give oxygen. Consult a physician.

Ingestion
Rinse mouth thoroughly with water immediately, repeat until all traces of product have been removed. DO NOT INDUCE VOMITING. Seek immediate medical advice.

Skin
If skin or hair contact occurs, remove contaminated clothing and flush skin and hair with running water. Wash clothing before reuse. Decontaminate clothing, shoes and leather goods before re-use, or discard. Seek medical attention.

Eye contact
If in eyes, hold eyelids apart and flush the eye continuously with running water. Continue flushing until advised to stop by the Poisons Information Centre or a doctor, or for at least 15 minutes. Seek immediate medical assistance.

First Aid Facilities
Maintain eyewash fountain and drench facilities in work area.

Advice to Doctor
Treat symptomatically and supportively. Consider oral administration of sodium thiosulfate solutions if sodium hypochlorite is ingested. Do not administer neutralizing substances (e.g., acid antidotes) since the resultant exothermic reaction could further damage tissue. Sodium thiosulphate immediately reduces hypochlorite to non-toxic products but may produce hydrogen sulphide in contact with acids. Endotracheal intubation could be needed if glottic oedema compromises the airway. For individuals with significant inhalation exposure, monitor arterial blood gases and chest x-ray. Symptoms of pulmonary oedema can be delayed up to 48 hours after exposure.

Protection for First Aiders
No action shall be taken involving any personal risk or without suitable training. Take proper precautions to ensure your own safety before attempting rescue; (e.g. wear appropriate protective equipment, use the ‘buddy’ system.) Can release corrosive chlorine gas. If it is suspected that fumes are still present, the rescuer should wear an appropriate mask or self-contained breathing apparatus. It may be dangerous to the person providing aid to give mouth-to-mouth resuscitation. Avoid mouth-to-mouth contact by using mouth guards or shields. Wash contaminated clothing thoroughly with water before removing or wear gloves.

Other Information
For advice, contact a Poisons Information Centre (Phone eg Australia 13 1126; New Zealand 0800 764 766) or a doctor.

5. Fire-fighting measures

Hazardous from Combustion Products
Dangerous, corrosive, irritating, toxic and/or hazardous combustion fumes, vapours, or gases including chlorine gas (above 35 °C, or when mixed with chemicals (e.g., ammonia, acids, detergents, etc.) or organic matter (e.g., urine, faeces, etc.)); hydrogen chloride gas (HCl), hydrochloric acid, sodium chlorate, oxygen gas (when exposed to sunlight), chloramine gas (when mixed with ammonia), flammable hydrogen gas (upon contact with metals) and sodium oxide (Na2O) (at high temperatures).

Specific Methods
Use extinguishing media most appropriate for the surrounding fire. This product contains a substantial proportion of water therefore there are no restrictions on the type of extinguishing media which may be used.

Specific hazards arising from the chemical Hazchem Code
Material does not burn. Fire or heat will produce irritating, poisonous and/or corrosive gases. Containers may explode when heated.

Decomposition Temp.
> 35 °C; 96 - 120 °C at 1013 hPa (boiling point).

Precautions in connection with Fire
Wear SCBA and chemical splash suit. Fully-encapsulating, gas-tight suits should be worn for maximum protection. Structural firefighter’s uniform is NOT effective for these materials.

6. Accidental release measures
7. Handling and storage

Precautions for Safe Handling
Avoid ingestion and inhalation of vapour (or) spray mist. Avoid contact with eyes, skin, or clothing. Avoid prolonged or repeated exposure. Ensure adequate ventilation when using. In case of insufficient ventilation, wear suitable respiratory equipment. If ingested, seek medical advice immediately and show the container or the label. Wear appropriate protective clothing and clothing. Wash hands after use. It is essential that all who come into contact with this material, maintain high standards of personal hygiene i.e. washing hands prior to eating, drinking, smoking or going to the toilet. Do not mix with other chemicals. Do not mix with different types of chlorinating chemicals. Keep away from incompatible substances such as reducing agents, combustible materials, organic materials, metals, acids. Limited shelf life.

Conditions for safe storage, including any incompatibilities
Corrosives area. Store under cover in a suitable, light-resistant, labelled, tightly closed containers, in a dry, clean, cool, well ventilated place away from sunlight. Cannot be stored indefinitely. May decompose forming gaseous products, especially when stored over long periods. Store and transport in an upright container. Close containers in such a way to enable internal pressure to escape (e.g. excess pressure valve). Store away from incompatible materials. Do not mix with other chemicals. Do not mix with different types of chlorinating chemicals. Store away from flammable, combustible and reducing substances, acids, alkalies, food and feedstuffs. Store away from sources of heat or ignition. Vent caps should be checked with full personal protection. Containers of this material may be hazardous when empty since they retain product residues (vapours, liquid); observe all warnings and precautions listed for the product.

Corrosiveness
Corrosivity to Metals: Sodium hypochlorite solutions (20%) are corrosive to brass (aluminium, naval and silicon) bronze, carbon steel, cast iron, Hastelloy, Inconel, nickel, stainless steels (types 304/347, 316 and 400 series) and silicon copper. Concentrated sodium hypochlorite is corrosive to most metals, including aluminium, copper, brass, bronze, carbon steel, Hastelloy, Inconel, lead, Monel, nickel and stainless steel type 400 series. Sodium hypochlorite solutions are not corrosive to tantalum, titanium and zirconium. Dilute solutions are not corrosive to Hastelloy C/C-276 (10%), Incolloy (5%) and high silicon iron.

Corrosivity to Non-Metals: Sodium hypochlorite solutions attack some plastics (such as nylon, Bisphenol A-fumarate and isophthalic polyesters), elastomers (such as soft rubber, neoprene and nitrite Buna-N) and coatings (such as coal tar epoxy, epoxy and vinyls). Sodium hypochlorite solutions do not attack acrylonitrile-butadiene-styrene (ABS), Butyl rubber, isoprene, hard rubber, natural rubber, polyvinyl chloride (PVC), chlorinated polyvinyl chloride (CPVC), polyethylene, polypropylene, polyethylene, Teflon and Viton.

Storage Regulations
Refer Australian Standard AS 3780-1994 'The storage and handling of corrosive substances'.

Storage Temperature
Below 25°C.

Unsuitable Materials
Metal, ceramic and glass containers.

8. Exposure controls/personal protection

Other Exposure Information
A time weighted average (TWA) has been established for Chlorine (Safe Work Australia) of 3 mg/m³ (Peak limitation), (1 ppm). The exposure value at the TWA is the average airborne concentration of a particular substance when calculated over a normal 8 hour working day for a 5 day working week.

Peak Limitation - a ceiling concentration which should not be exceeded over a measurement period which should be as short as possible but not exceeding 15 minutes.

Appropriate engineering controls
Provide sufficient ventilation to ensure that the working environment is below the TWA (time weighted average). Where vapours or mists are generated, particularly in enclosed areas, and natural ventilation is inadequate, a flame proof exhaust ventilation system is required. Refer to AS 1940-The storage and handling of flammable and combustible liquids and AS 2430-Explosive gas atmospheres for further information concerning ventilation requirements.

Respiratory Protection
Where ventilation is not adequate, respiratory protection may be required. Avoid breathing vapours or mists. Select and use respirators in accordance with AS 1716 - Respiratory Protective Devices and be selected in accordance with AS 1715 - Selection, Use and Maintenance of Respiratory Protective
Device. When mists or vapours exceed the exposure standards then the use of the following is recommended: Approved respirator with organic vapour and dust/mist filters. Filter capacity and respirator type depends on exposure levels.

Eye Protection
The use of a face shield, chemical goggles or safety glasses with side shield protection as appropriate.

Hand Protection

Footwear
Safety boots in industrial situations is advisory, foot protection should comply with AS 2210, Occupational protective footwear - Guide to selection, care and use.

Body Protection
Flame retardant antistatic protective clothing. Clean clothing or protective clothing should be worn, preferably with an apron. Clothing for protection against chemicals should comply with AS 3765 Clothing for Protection Against Hazardous Chemicals.

Hygiene Measures
Always wash hands before smoking, eating or using the toilet. Wash contaminated clothing and other protective equipment before storing or re-using.

9. Physical and chemical properties

Form
Liquid

Appearance
Clear, pale yellow or greenish liquid.

Odour
Characteristic, pungent, chlorine-like (bleach) odour; disagreeable, sweetish odour.

Decomposition Temperature
> 35 °C; 96 - 120 °C at 1013 hPa (boiling point).

Melting Point
-6 °C (5% solution); -25 °C approx. (12% solution).

Boiling Point
96 - 120 °C at 1013 hPa (decomposition).

Solubility in Water
Miscible (soluble) in all proportions.

Solubility in Organic Solvents
Reacts with many organic solvents.

Specific Gravity
Approx. 1.1 (6% aqueous solution); 1.21 (14% aqueous solution) (water = 1).

pH
Approx. 13 (Alkaline).

Vapour Pressure
17.4 - 25 hPa at 20 °C.

Evaporation Rate
Not available; probably very low.

Odour Threshold
Not applicable. Odour is due to breakdown products such as chlorine.

Partition Coefficient: Log P(oct) = -3.42 (estimated).

n-octanol/water
Non combustible material.

Explosion Properties
Slightly explosive in presence of heat. Explosive decomposition may occur under fire conditions and closed containers may rupture violently due to rapid decomposition, if exposed to fire or excessive heat for a sufficient period of time. The anhydrous solid obtained by desiccation of the sodium hypochlorite pentahydrate will decompose violently on heating or friction. May react to form normal chloramines, which are explosive. Interaction with ethyleneimine gives the explosive N-chloro compound. Removal of formic acid from industrial waste streams with sodium hypochlorite solution becomes explosive at 55 °C. Several explosions involving methanol and sodium hypochlorite were attributed to formation of methyl hypochlorite, especially in presence of acid or other esterification catalyst. Use of sodium hypochlorite solution to destroy acidified benzyl cyanide residues caused a violent explosion, thought to have been due to formation of nitrogen trichloride. Containers may rupture from pressure build-up.

Molecular Weight
74.44

Oxidising Properties
Sodium hypochlorite solutions give off oxygen when heated or when exposed to sunlight. However, the amount is small and will not cause or contribute to combustion. The solutions are, therefore, not considered to be oxidizing agents.

Dynamic Viscosity
2.6 mPas (20 °C).

10. Stability and reactivity

Chemical Stability
Sodium hypochlorite solutions decompose slowly on contact with carbon dioxide from air at normal temperatures releasing low concentrations of corrosive chlorine gas. Decomposition is influenced by temperature, concentration, pH, ionic strength, exposure to light and the presence of metals, such as copper, nickel or cobalt, metal oxides, e.g. rust and other impurities, such as acids and amines. Shelf life
Product Name: SODIUM HYPOCHLORITE Solution 8 -12.5% avail. Chlorine

Condition to Avoid
Exposure to light, air or heat, acidic conditions, the presence of combustible materials, metals and other impurities and incompatible materials.

Incompatible Materials
Primary amines (e.g. ethylamine) and aromatic amines (e.g. aniline); ammonium salts (e.g. ammonium sulfate and ammonium nitrate), ammonia, urea or phenylacetonitrile if acid is present; acids (especially hydrochloric acid); metals (especially copper, nickel and cobalt); reducing agents (e.g. hydrides, such as lithium aluminium hydride); ethyleneimine (aziridine); methanol, especially in the presence of acids or other etherification catalysts; formic acid (at 55 °C); furfuraldehyde; ethanediol (ethylene glycol); sodium ethylenediaminetetraacetate (EDTA) solution and sodium hydroxide solution + mixing.

Hazardous Decomposition Products
Dangerous, corrosive, irritating, toxic and/or hazardous combustion fumes, vapours, or gases including chlorine gas (above 35 °C, or when mixed with chemicals (e.g. ammonia, acids, detergents, etc.) or organic matter (e.g. urine, faeces, etc.)), hydrogen chloride gas (HCl), hydrochloric acid, sodium chloride, oxygen gas (when exposed to sunlight), chloramine gas (when mixed with ammonia), flammable hydrogen gas (upon contact with metals) and sodium oxide (Na2O) (at high temperatures).

Possibility of hazardous reactions
Reaction with primary amines (e.g. ethylamine) and aromatic amines (e.g. aniline) forms explosively unstable N-mono- or di-chloramines. Reaction with ammonium salts (e.g. ammonium sulfate and ammonium nitrate), ammonia, urea or phenylacetonitrile forms explosive nitrogen trichloride, if acid is present. Contact with acids (especially hydrochloric acid) releases toxic and corrosive chlorine gas. Reaction with reducing agents (e.g. hydrides, such as lithium aluminium hydride) are violent. Reaction with ethyleneimine (aziridine) form the explosive N-chloroethyleneimine. Reactions with methanol can form explosive methyl hypochlorite, especially in the presence of acids or other etherification catalysts. Reaction with formic acid become explosive at 55 °C. Dropwise addition of the furfuraldehyde to a 10% excess of sodium hypochlorite solution at 20-25 °C can lead to a violent explosion. Reaction with ethanediol (ethylene glycol) is explosively violent after an induction period of about 4 to 8 minutes. Reaction with sodium ethylenediaminetetraacetate (EDTA) solution and sodium hydroxide solution with mixing leads to vigorous foaming decomposition.

Hazardous Polymerization
Will not occur.

11. Toxicological Information

Ingestion
Ingestion can cause irritation, pain and inflammation of the mouth, throat and stomach, as well as vomiting. In severe cases, serious effects including nausea, vomiting, choking, coughing, haemorrhage, oedema of the pharynx, glottis, larynx with stridor and obstruction, ulceration and perforation of the gastrointestinal tract, with mediastinitis or pneumonitis, circulatory collapse, confusion, coma and possible death. Risk of aspiration! The amount ingested, the concentration and pH of the solution affect the severity of the symptoms. As little as 30 mL of a solution with 15% available chlorine may be lethal. Ingestion is not a typical route of occupational exposure.

Inhalation
Excessive inhalation of vapours, mists, or fumes, especially if the pH is lowered, if the solution is heated or if mixed with acids, resulting in the release of hazardous concentrations of chlorine, may cause irritations of the mucous membranes of the nose, throat and lungs, burning sensation, coughing, wheezing, dyspnoea, shortness of breath, sore throat, laryngitis, headache, nausea, vomiting, pulmonary oedema, pneumonitis and emphysema. Symptoms may be delayed. Additional effects have included circulatory collapse and confusion, delirium, coma, and even death.

Skin
May cause severe irritation or skin burns depending on the duration of contact, the concentration and pH of the solution. Contact with skin may also cause redness, itching, severe pain, vesicular eruptions and eczematoid dermatitis which becomes evident upon re-exposure.

Eye
Contact may cause severe irritation and corrosive injury, especially at higher concentration. May cause stinging, blurring, tearing, severe pain and possible permanent corneal damage. Risk of blindness! Heating or mixing with acids can cause significant concentrations of chlorine gas (a severe eye irritant) to be released. Chlorine concentrations of 1 ppm and higher have reportedly caused stinging, a burning sensation, rapid blinking, redness and watering of the eyes.

Carcinogenicity
Hypochlorite salts are evaluated in the IARC Monographs (Vol. 52; 1991) as Group 3: Not classifiable as to carcinogenicity to humans.

Chronic Effects
Prolonged or repeated inhalation may cause allergic respiratory reaction (asthma). Prolonged or repeated skin contact may cause redness, dryness, blistering, cracking, irritation, with possible dermatitis following. Prolonged or repeated eye contact may cause conjunctivitis.

12. Ecological Information

Ecotoxicity
Forms corrosive mixtures with water even if diluted. Highly toxic for aquatic organisms. Harmful effect due to pH shift.
Safety Data Sheet

SODIUM HYPOCHLORITE Solution 8 -12.5% avail. Chlorine

Classified as hazardous

13. Disposal considerations

Disposal Considerations: Whatever cannot be saved for recovery or recycling should be disposed of according to relevant local, state and federal government regulations.

14. Transport information

Transport Information: Dangerous goods of Class 8 (Corrosive) are incompatible in a placard load with any of the following: Class 1, Class 4.3, Class 5, Class 6, if the Class 6 dangerous goods are cyanides and the Class 8 dangerous goods are acids, Class 7; and are incompatible with food and food packaging in any quantity.

UN proper shipping name: HYPOCHLORITE SOLUTION

U.N. Number: 1791

Transport hazard class(es): 8

Hazchem Code: 2X

Packaging Method: 3.8.8RT7,RT8

Packaging Group: III

EPG Number: 8A1

IERG Number: 37

15. Regulatory information

Regulatory Information: Listed in the Australian Inventory of Chemical Substances (AICS).

16. Other Information

Literature References:
- 'Standard for the Uniform Scheduling of Medicines and Poisons :', Commonwealth of Australia.
- Safe Work Australia, 'Approved Criteria for Classifying Hazardous Substances [NOHSC:1008 (2004)]'.
- Safe Work Australia, 'Hazardous Substances Information System, 2005'.
- Safe Work Australia, 'National Code of Practice for the Labelling of Safe Work Hazardous Substances (2011)'.

Disclaimer Statement:
All information provided in this data sheet or by our technical representatives is compiled from the best knowledge available to us. However, since data, safety standards and government regulations are subject to change and the conditions of handling and use, or misuse, are beyond our control, we make no warranty either expressed or implied, with respect to the completeness or accuracy to the information contained herein. Chem-Supply accepts no responsibility whatsoever for its accuracy or for any results that may be obtained by customers from using the data and disclaims all liability for reliance on information provided in this data sheet or by our technical representatives.

Contact Person/Point: Paul McCarthy Ph. (08) 8440 2000

Empirical Formula & Structural Formula: NaOCl

...End Of MSDS...
Product Name: SODIUM HYPOCHLORITE Solution 8 -12.5% avail. Chlorine

Classified as hazardous

Copyright in the source code of the HTML, PDF, XML, XFO and any other electronic files rendered by an Infosafe system for Infosafe MSDS displayed is the intellectual property of Acohs Pty Ltd.

Copyright in the layout, presentation and appearance of each Infosafe MSDS displayed is the intellectual property of Acohs Pty Ltd.

The compilation of MSDS's displayed is the intellectual property of Acohs Pty Ltd.

Copying of any MSDS displayed is permitted for personal use only and otherwise is not permitted. In particular the MSDS's displayed cannot be copied for the purpose of sale or licence or for inclusion as part of a collection of MSDS without the express written consent of Acohs Pty Ltd.